
RSA Authentication Agent 5.3 for Web
Authentication Developer’s Guide
for Sun Java System Web Server

and Apache Web Server

Contact Information
See our Web sites for regional Customer Support telephone and fax numbers.

RSA Security Inc. RSA Security Ireland Limited
www.rsasecurity.com www.rsasecurity.ie

Trademarks
ACE/Agent, ACE/Server, Because Knowledge is Security, BSAFE, ClearTrust, Confidence Inspired, e-Titlement,
IntelliAccess, Keon, RC2, RC4, RC5, RSA, the RSA logo, RSA Secured, the RSA Secured logo, RSA Security, SecurCare,
SecurID, SecurWorld, Smart Rules, The Most Trusted Name in e-Security, Transaction Authority, and Virtual Business Units
are either registered trademarks or trademarks of RSA Security Inc. in the United States and/or other countries. All other
goods and/or services mentioned are trademarks of their respective companies.

License agreement
This software and the associated documentation are proprietary and confidential to RSA Security, are furnished under license,
and may be used and copied only in accordance with the terms of such license and with the inclusion of the copyright below.
This software and any copies thereof may not be provided or otherwise made available to any other person.
Neither this software nor any copies thereof may be provided to or otherwise made available to any third party. No title to or
ownership of the software or any intellectual property rights thereto is hereby transferred. Any unauthorized use or
reproduction of this software may be subject to civil and/or criminal liability.
This software is subject to change without notice and should not be construed as a commitment by RSA Security.

Note on encryption technologies
This product may contain encryption technology. Many countries prohibit or restrict the use, import, or export of encryption
technologies, and current use, import, and export regulations should be followed when exporting this product.

Distribution
Limit distribution of this document to trusted personnel.
© 2004 RSA Security Inc. All rights reserved.
First printing: September 2004
Second printing: December 2004

www.rsasecurity.com
www.rsasecurity.ie

Web Authentication Developer’s Guide
Contents
Web Authentication API Overview ... 5

Developer Profile .. 5
Sample Source Code ... 5
Before You Begin ... 6

Installation and Set Up .. 7
Setting Up the Environment for the Java Program ... 7
Setting Up the Environment for the C/C++ Program ... 8
Setting Up the Environment for the Perl Program.. 9

API Information for the Java Environment ... 10
Constructor.. 10

RSACookieAPI.. 10
Methods..11

RSAGetLastError..11
RSAGetShellField ... 12
RSAGetTagField ... 13
RSAGetUserName... 15
RSASetTagField .. 16
RSADeleteTagField... 19

API Functions for the C/C++ Environment ... 20
RSAGetLastError.. 21
RSAGetShellField... 22
RSAGetTagField... 24
RSAGetUserName .. 26
RSASetTagField ... 28
RSADeleteTagField .. 31
RSAFreeMemory .. 33

API Application for the Perl Script Environment 34
RSACookie ... 35

Troubleshooting C/C++ and Perl Programs... 37
Getting Third-Party Tag Data From the Cookie ... 37
Setting Third-Party Tag Data in the Cookie ... 38
Parameter Settings... 39

Agent Parameter Settings... 40
BrowserIP Parameter Settings: .. 40
Cookie Parameter Settings... 41
szInstance Parameter Settings.. 41
User Parameter Settings... 42
Contents 3

Web Authentication Developer’s Guide
Web Authentication API Overview

The Web Authentication Application Programming Interface (API) lets developers
add, modify, and delete data within a custom section of the Web access authentication
browser cookie.

The data is signed by the API as part of the cookie, and therefore can be guaranteed
against tampering. For privacy, the API also provides a facility to encrypt custom data
using the RC5 encryption algorithm.

All API functions described in this document are thread safe, meaning they can safely
be called from multithreaded applications without program failure or data corruption.

Important: U.S. export regulations impose a limit of six different encrypted custom
fields, each of which consists of a tag and its data string. Duplicate tags with the same
or different data string do not add to the count of fields. A maximum of 30 bytes of
data can be encrypted in a field. The system returns an error if you exceed these limits.

Developer Profile
Previous experience in RSA Authentication Agent development is helpful but not
necessary. However, you must understand the CGI environment as defined for use in
the C, Java, or Perl web application development environments.

Sample Source Code
The RSA Authentication Agent 5.3 for Web product includes sample source code that
demonstrates the basic calling sequence and usage in the development environments.
The sample code is suitable for running on Red Hat Linux or Solaris platforms.

The Web Authentication API sample source code is included in the rsacookieapi.tar
file included with your Web Agent. After you install the Web Authentication API, you
can find the sample code in the rsacookieapi/samples directory.
 Web Authentication API Overview 5

Web Authentication Developer’s Guide
Before You Begin
If a cookie is replaced before a customized Web access authentication browser cookie
expires, the replacement cookie supersedes the customized cookie. As a result, you
lose any third-party data you are setting using the RSA Authentication Agent Web
Authentication API.

To prevent the loss of third-party data, use the following guidelines to configure your
Web Agent cookie expiration times so that you have an appropriate window for setting
third-party data:

• If the expiration time for idle cookies is greater than the overall cookie expiration
time, the idle cookie feature becomes invalid, and the cookie is not replaced.

• If the expiration time for idle cookies is less than three minutes and less than the
overall cookie expiration time, the cookie is replaced every 30 seconds.

• If the expiration time for idle cookies is greater than three minutes but less than
the overall cookie expiration time, the cookie is replaced every 60 seconds.
6 Web Authentication API Overview

Web Authentication Developer’s Guide
Installation and Set Up

You must install and run the Web Authentication API software on the same server that
is running the RSA Authentication Agent for Web.

Note: If the web server and the application that runs the Web Authentication API are
not run under the same user account, you must add the application user account to the
web server's group and change the protection on the rsawebagent directory to 710.

Setting Up the Environment for the Java Program

To set up the environment for the Java program:

1. Change to the directory you created when you downloaded the software. Untar the
RSACookieAPI distribution archive.

tar -xvf rsacookieapi.tar

2. Copy the shared library to /lib.
cd rsacookieapi

cp librsacookieapi.so /lib

3. Set the environment variable LD_LIBRARY_PATH.
If you use one of the C-Shell variants (csh, tcsh), type

setenv LD_LIBRARY_PATH /lib

If you use a Bourne shell or a Bourne-compatible shell (such as sh, bash, ksh),
type

LD_LIBRARY_PATH=/lib

4. Copy the jar file into a directory that is within the classpath.
cp RSACookieAPI.jar
serverlet_engine_directory/webapps/jsp-examples/WEB-INF/lib

5. Copy sample.jsp to the directory where the servlet engine is installed.
cd samples

cp sample.jsp
serverlet_engine_directory/webapps/jsp-examples/
 Installation and Set Up 7

Web Authentication Developer’s Guide
Setting Up the Environment for the C/C++ Program

Important: These procedures use the Apache web server as an example. Directory
locations will vary depending on the web server you are using.

To set up the environment for the C/C++ program:

1. Change to the directory you created when you downloaded the software. Untar the
RSACookieAPI distribution archive.

tar -xvf rsacookieapi.tar

2. Copy the shared library to /lib.
cd rsacookieapi

cp librsacookieapi.so /lib

3. Copy the cdtexample.cgi C script to your web server cgi directory.
cd samples/c

cp cdtexample.cgi /usr/local/apache/cgi-bin

4. If necessary, create an images directory in your web server document root
directory.

mkdir /usr/local/apache/htdocs/images

Note: Some web servers create an images directory by default, during
installation.

5. Copy the .gif files to the images directory.
cd files

cp *.gif usr/local/apache/htdocs/images

6. Copy cgd4.htm to your web server document root directory.
cp cgd4.htm /usr/local/apache/htdocs
8 Installation and Set Up

Web Authentication Developer’s Guide
Setting Up the Environment for the Perl Program

Important: These procedures use the Apache web server as an example. Directory
locations will vary depending on the web server you are using.

To set up the environment for the Perl program:

1. Change to the directory you created when you downloaded the software. Untar the
RSACookieAPI distribution archive.

tar -xvf rsacookieapi.tar

2. Copy the shared library to /lib.
cd rsacookieapi

cp librsacookieapi.so /lib

3. Copy the Perl scripts to your web server cgi directory.
cd samples/perl

cp *.pl usr/local/apache/cgi-bin

4. Copy the rsacookie executable to your web server cgi directory.
cp rsacookie /usr/local/apache/cgi-bin

5. Copy sample.htm to your web server document root directory.
cp sample.htm usr/local/apache/htdocs
 Installation and Set Up 9

Web Authentication Developer’s Guide
API Information for the Java Environment

This section describes the com.rsa.cookieapi package.

Reminder: To use the methods listed in this section, you must have set the
environment variable LD_LIBRARY_PATH to /lib.

Note: If you migrate code from your Web Agent 5.2 installation to your Web Agent 5.3
installation, you must reference the com.rsa.cookieapi package.

Constructor

RSACookieAPI

Description
public RSACookieAPI(HttpServletRequest request)

The RSACookieAPI constructor defines an RSACookieAPI object.

You must create an instance of RSACookieAPI. Use one of the following statements:
RSACookieAPI rsacookieapi = new RSACookieAPI(request);

or
RSACookieAPI rsacookieapi;
rsacookieapi = new RSACookieAPI(request);

This class can be instantiated only in a JSP web server page or a servlet.

Input Arguments

Request The HTTPServletRequest object created by the servlet container.
10 API Information for the Java Environment

Web Authentication Developer’s Guide
Methods

Note: The methods of RSACookieAPI expect to obtain the RSA Web access
authentication cookie from the HttpServletRequest request variable.

RSAGetLastError

Description
int RSAGetLastError()

The RSAGetLastError method retrieves the last-error code value.

Architecture
This method returns the last-error code value. The “Ouputs and Post Conditions”
section of each reference page notes the conditions under which the method sets the
last-error code.

Input Arguments
None required.

Calling or Command Sequence
For examples of how to use this method, refer to the sample code provided in the
rsacookieapi/samples/jsp directory.

Error Handling
To handle errors appropriately, use this method immediately when a method returns to
check for error conditions. Subsequent methods overwrite older error codes.
 API Information for the Java Environment 11

Web Authentication Developer’s Guide
RSAGetShellField

Description
String RSAGetShellField()

The RSAGetShellField method retrieves the Default Shell field stored in the Web
access authentication cookie. The value in this field is the same as the Default Shell
value stored in the RSA ACE/Server database for the user.

Architecture
This method returns the Default Shell field as a String object. If the return is an empty
string, the caller can use the RSAGetLastError method of the RSACookie object to
retrieve one of the defined error codes. For more information, see “Outputs and Post
Conditions.”

Input Arguments
None required.

Outputs and Post Conditions
If the value that is returned by this method is an empty string, the last-error code will
contain one of the following values. Use RSAGetLastError to return the value.

For more information, see “Error Handling.”

Calling or Command Sequence
For examples of how to use this method, refer to the sample code provided in the
rsacookieapi/samples/jsp directory.

Error Handling
To handle errors appropriately, use the value returned by this method at a decision
point in your code. A successful return allows processing to continue. To handle a
failure, your code must call the RSAGetLastError method and take the appropriate
action.

0 RSACOOKIE_ERROR_
NO_ERROR

The operation was successful.

100 RSACOOKIE_ERROR_
CANNOT_ACCESS_SETTINGS

The API library cannot communicate
with the web server process to retrieve
necessary information.

101 RSACOOKIE_ERROR_VALID_
COOKIE_NOT_FOUND

The Request argument does not contain a
valid RSA cookie.

103 RSACOOKIE_ERROR_
NOT_ENOUGH_MEMORY

There is not enough memory to perform
the requested operation.

104 RSACOOKIE_ERROR_
INVALID_ARGUMENT

One of the input arguments is invalid.
12 API Information for the Java Environment

Web Authentication Developer’s Guide
RSAGetTagField

Description
String RSAGetTagField(String tag, int encrypted)

The RSAGetTagField method retrieves a developer-defined field identified by name.
The name of the tag is identified by the Tag argument. The field is assumed to have
been stored in the Web access authentication cookie by a previous call to the
RSASetTagField method.

Architecture
This method returns the field data as a String object. If the return is an empty string,
the caller can use the RSAGetLastError method of the RSACookie object to retrieve
one of the defined error codes. For more information, see “Outputs and Post
Conditions.”

Input Arguments

Outputs and Post Conditions
If the value that is returned by this method is an empty string, the last-error code will
contain one of the following values. Use RSAGetLastError to return the value. For
more information, see “Error Handling.”

Tag The name of the field to set or replace.

Encrypted A Boolean flag indicating that the content of the field was encrypted
when it was created by the call to the RSASetTagField function.
Note: This flag is included for backward compatibility with the Web
Authentication API used in RSA ACE/Agent 4.4 for Windows NT,
which did not include the embedded ‘Encrypted’ flag. The
RSAGetTagField function ignores this flag.

0 RSACOOKIE_ERROR_
NO_ERROR

The operation was successful.

100 RSACOOKIE_ERROR_
CANNOT_ACCESS_SETTINGS

The API library cannot communicate
with the web server process to retrieve
necessary information.

101 RSACOOKIE_ERROR_
VALID_COOKIE_NOT_FOUND

The Request argument does not contain a
valid RSA cookie.

102 RSACOOKIE_ERROR_
DATA_TAG_NOT_FOUND

The cookie is valid but the required tag is
not present.

103 RSACOOKIE_ERROR_
NOT_ENOUGH_MEMORY

There is not enough memory to perform
the requested operation.

104 RSACOOKIE_ERROR_
INVALID_ARGUMENT

One of the input arguments is invalid.

105 RSACOOKIE_ERROR_
CIPHERSUITE_ERROR

The decryption routine failed to decrypt
the tag in the cookie.
 API Information for the Java Environment 13

Web Authentication Developer’s Guide
Calling or Command Sequence
For examples of how to use this method, refer to the sample code provided in the
rsacookieapi/samples/jsp directory.

Error Handling
To handle errors appropriately, use the value returned by this method at a decision
point in your code. A successful return allows processing to continue. To handle a
failure, your code must call the RSAGetLastError method and take the appropriate
action.
14 API Information for the Java Environment

Web Authentication Developer’s Guide
RSAGetUserName

Description
String RSAGetUserName()

The RSAGetUserName method retrieves the username stored in the Web access
authentication cookie.

Architecture
This method returns the username as a String object. If the return is an empty string,
the caller can use the RSAGetLastError method to retrieve one of the defined error
codes. For more information, see “Outputs and Post Conditions.”

Input Arguments
None required.

Outputs and Post Conditions
If the value that is returned by this method is an empty string, the last-error code will
contain one of the following values. Use RSAGetLastError to return the value. For
more information, see “Error Handling.”

Calling or Command Sequence
For examples of how to use this method, refer to the sample code provided in the
rsacookieapi/samples/jsp directory.

Error Handling
To handle errors appropriately, use the value returned by this method at a decision
point in your code. A successful return allows processing to continue. To handle a
failure, your code must call the RSAGetLastError method and take the appropriate
action.

0 RSACOOKIE_ERROR_
NO_ERROR

The operation was successful.

100 RSACOOKIE_ERROR_
CANNOT_ACCESS_SETTINGS

The API library cannot communicate
with the web server process to retrieve
necessary information.

101 RSACOOKIE_ERROR_
VALID_COOKIE_NOT_FOUND

The Request argument does not contain a
valid RSA cookie.

103 RSACOOKIE_ERROR_
NOT_ENOUGH_MEMORY

There is not enough memory to perform
the requested operation.

104 RSACOOKIE_ERROR_
INVALID_ARGUMENT

One of the input arguments is invalid.
 API Information for the Java Environment 15

Web Authentication Developer’s Guide
RSASetTagField

Description
To set one tag in a cookie or to set the first of multiple tags in the same cookie:

String RSASetTagField(String tag, String data, int
encrypted)

To set multiple tags in the same cookie, after the initial tag has been set:
String RSASetTagField(String newcookie, String tag, String
data, int encrypted)

The RSASetTagField method stores the String object passed as the Data argument in
the Web access authentication cookie. If the name identified by the Tag argument
already exists, it will be replaced.

Architecture
This method returns a new cookie string suitable for an HTTP Set-Cookie: header as a
String object. You must then set the cookie header in the response object.

Note: U.S. export regulations impose a limit of six different encrypted custom fields
(a field consists of a tag and its data string). Duplicate tags with the same or different
data string do not add to the count of fields. A maximum of 30 bytes of data can be
encrypted in a field. The system returns an error if you exceed these limits.

If the return is an empty string, the caller can use the RSAGetLastError method of
the RSACookie object to retrieve one of the defined error codes. For more
information, see “Outputs and Post Conditions.”

Input Arguments
Use the following input arguments when setting one tag in a cookie or the first of
multiple tags in the same cookie:

Tag The name of the field to set or replace.

Data The data to set in the field. If binary data must be stored, use any suitable
ASCII encoding method to convert the data to a NULL-terminated ANSI
string.

If the Encrypted flag is set, the maximum is 30 bytes of data. If the
Encrypted flag is not set, the only size limitations are those imposed by the
browser and available memory.

Encrypted A Boolean flag indicating that the contents of the field are to be encrypted.
16 API Information for the Java Environment

Web Authentication Developer’s Guide
Use the following input arguments when setting subsequent tags in the same cookie.

Outputs and Post Conditions
If the value that is returned by this method is an empty string, the last-error code will
contain one of the following values. Use RSAGetLastError to return the value. For
more information, see “Error Handling.”

Newcookie Takes the cookie created by the initial RSASetTagField

Tag The name of the field to set or replace.

Data The data to set in the field. If binary data must be stored, use any suitable
ASCII encoding method to convert the data to a NULL-terminated ANSI
string.

If the Encrypted flag is set, the maximum is 30 bytes of data. If the
Encrypted flag is not set, the only size limitations are those imposed by the
browser and available memory.

Encrypted A Boolean flag indicating that the contents of the field are to be encrypted.

0 RSACOOKIE_ERROR_
NO_ERROR

The operation was successful.

100 RSACOOKIE_ERROR_
CANNOT_ACCESS_SETTINGS

The API library cannot communicate
with the web server process to retrieve
necessary information.

101 RSACOOKIE_ERROR_
VALID_COOKIE_NOT_FOUND

The Request argument does not
contain a valid RSA cookie.

103 RSACOOKIE_ERROR_
NOT_ENOUGH_MEMORY

There is not enough memory to
perform the requested operation.

104 RSACOOKIE_ERROR_
INVALID_ARGUMENT

One of the input arguments is invalid.

105 RSACOOKIE_ERROR_
CIPHERSUITE_ERROR

The decryption routine failed to
decrypt the tag in the cookie.

106 RSACOOKIE_ERROR_
LONGDATALEN_ENCRYPTION

Attempted to encrypt more than 30
bytes of data in a field.

107 RSACOOKIE_ERROR_
TOOMANY_ENCRYPTED_FIELDS

Attempted to encrypt more than six
fields of custom data.
 API Information for the Java Environment 17

Web Authentication Developer’s Guide
Calling or Command Sequence
For examples of how to use this method, refer to the sample code provided in the
rsacookieapi/samples/jsp directory.

Error Handling
To handle errors appropriately, use the value returned by this method at a decision
point in your code. A successful return allows processing to continue. To handle a
failure, your code must call the RSAGetLastError method and take the appropriate
action.
18 API Information for the Java Environment

Web Authentication Developer’s Guide
RSADeleteTagField

Description
To delete one tag in a cookie or to delete the first of multiple tags in the same cookie:

String RSADeleteTagField(String tag)

To delete multiple tags in the same cookie, after the initial tag has been deleted:
String RSADeleteTagField(String newcookie, String tag)

The RSADeleteTagField method deletes a developer-defined field identified by
name. The name of the field is given by the Tag argument. The field is assumed to
have been stored in the Web access authentication cookie by a previous call to the
RSASetTagField method.

Architecture
This method returns a new cookie string suitable for an HTTP Set-Cookie: header as a
String object. You must then set the cookie header in the response object.

If the return is an empty string, the caller can use the RSAGetLastError method of
the RSACookie object to retrieve one of the defined error codes. For more
information, see “Outputs and Post Conditions.”
 API Information for the Java Environment 19

Web Authentication Developer’s Guide
API Functions for the C/C++ Environment

Functions listed in this section are suitable for use in a C development environment.

To use the API functions on Solaris, you must install the SUN C++ Compiler and have
the C++ Compiler in the PATH environment variable. Gnu compilers are not
supported on Solaris. Linux does support Gnu compilers, therefore the -compat
argument is not necessary.

• If you use one of the C-shell variants (csh, tcsh), issue the following command:
setenv CPPC path_to_C++_compiler make -compat

• If you use the Bourne shell or a Bourne-compatible shell (such as sh, bash, or
ksh), issue the following command:

CPPC = path_to_C++_compiler make -compat

To use the API functions, you must include header file rsacookieapi.h when you
compile and link your CGI C executable with the library file librsacookieapi.so,
which you previously copied to the /lib directory.
20 API Functions for the C/C++ Environment

Web Authentication Developer’s Guide
RSAGetLastError

Description
unsigned int RSACOOKIEAPI_API RSAGetLastError(void);

The RSAGetLastError function retrieves the last error code value.

Architecture
This function returns the last-error code value. The Ouputs and Post Conditions
section of each reference page notes the conditions under which the function sets the
last-error code.

Input Arguments
None.

Calling or Command Sequence
For examples of how to use this function, refer to the sample code provided in the
rsacookieapi/samples/c directory.

Error Handling
To handle errors appropriately, use this function immediately when a function returns
to check for error conditions. Subsequent functions overwrite older error codes.
 API Functions for the C/C++ Environment 21

Web Authentication Developer’s Guide
RSAGetShellField

Description
LPCSTR RSACOOKIEAPI_API RSAGetShellField(
 LPCSTR szInstance, LPCSTR Cookie,
 LPCSTR User, LPCSTR BrowserIP, LPCSTR Agent);

The RSAGetShellField function retrieves the Default Shell Field value stored in the
Web access authentication cookie. The value in the cookie is the same as the Default
Shell value stored in the RSA ACE/Server database for the user.

Architecture
This function returns the Default Shell Field value as a NULL-terminated string. To
contain the string, the function allocates a buffer that must be freed by the caller when
the buffer is no longer useful. To free the buffer, your code must pass the buffer to the
RSAFreeMemory function.

If the RSAGetShellField function returns a NULL pointer, the caller can use the call
RSAGetLastError to retrieve one of the defined error codes. For more information,
see “Outputs and Post Conditions.”

Input Arguments

szInstance The value of the CGI variable SERVER_NAME unmodified.

Cookie The value of the CGI variable HTTP_COOKIE unmodified.

User The value of the CGI variable REMOTE_USER unmodified.

BrowserIP The value of the CGI variable REMOTE_ADDR unmodified.

Agent The value of the CGI variable HTTP_USER_AGENT unmodified.
22 API Functions for the C/C++ Environment

Web Authentication Developer’s Guide
Outputs and Post Conditions
This function returns the Default Shell Field as a NULL-terminated string and sets
the last-error code to one of the values in the following table. Use RSAGetLastError
to return the value. For more information, see “Error Handling.”

For information on field and parameter settings that result in particular error codes,
see “Troubleshooting C/C++ and Perl Programs” on page 37.

Calling or Command Sequence
For examples of how to use this function, refer to the sample code provided in the
rsacookieapi/samples/c directory.

Error Handling
To handle errors appropriately, use the value returned by this function at a decision
point in your code. A successful return allows processing to continue. To handle a
failure, your code must call the RSAGetLastError function and take the appropriate
action.

0 RSACOOKIE_ERROR_
NO_ERROR

The operation was successful.

100 RSACOOKIE_ERROR_
CANNOT_ACCESS_SETTINGS

The API library cannot communicate with
the web server process to retrieve necessary
information.

101 RSACOOKIE_ERROR_
VALID_COOKIE_NOT_FOUND

The Cookie argument does not contain a
valid RSA cookie.

103 RSACOOKIE_ERROR_
NOT_ENOUGH_MEMORY

There is not enough memory to perform the
requested operation.

104 RSACOOKIE_ERROR_
INVALID_ARGUMENT

One of the input arguments is invalid.
 API Functions for the C/C++ Environment 23

Web Authentication Developer’s Guide
RSAGetTagField

Description
LPCSTR RSACOOKIEAPI_API RSAGetTagField(
 LPCSTR szInstance, LPCSTR Cookie,
 LPCSTR User, LPCSTR BrowserIP, LPCSTR Agent,
 LPCSTR Tag, BOOL Encrypted);

The RSAGetTagField function retrieves a developer-defined field identified by
name. The name of the field is given by the Tag argument. The field is assumed to
have been stored in the Web access authentication cookie by a previous call to the
RSASetTagField function.

Architecture
This function returns the field as a NULL-terminated string. To contain the string, the
function allocates a buffer that must be freed by the caller when the buffer is no longer
useful. To free the buffer, your code must pass the buffer to the RSAFreeMemory
function.

If the RSAGetTagField function returns a NULL pointer, the caller can use the call
RSAGetLastError to retrieve one of the defined error codes. For more information,
see “Outputs and Post Conditions.”

Input Arguments

szInstance The value of the CGI variable SERVER_NAME unmodified.

Cookie The value of the CGI variable HTTP_COOKIE unmodified.

User The value of the CGI variable REMOTE_USER unmodified.

BrowserIP The value of the CGI variable REMOTE_ADDR unmodified.

Agent The value of the CGI variable HTTP_USER_AGENT unmodified.

Tag The name of the field to retrieve.

Encrypted A Boolean flag indicating that the content of the field was encrypted
when it was created by the call to the RSASetTagField function.
Note: This flag is included for backward compatibility with the Web
Authentication API used in RSA ACE/Agent 4.4 for Windows NT,
which did not include the embedded ‘Encrypted’ flag. The
RSAGetTagField function ignores this flag.
24 API Functions for the C/C++ Environment

Web Authentication Developer’s Guide
Outputs and Post Conditions
This function returns the field as a NULL-terminated string and sets the last-error code
to one of the values in the following table. Use RSAGetLastError to return the value.
For more information, see “Error Handling.”

For information on field and parameter settings that result in particular error codes,
see “Troubleshooting C/C++ and Perl Programs” on page 37.

Calling or Command Sequence
For examples of how to use this function, refer to the sample code provided in the
rsacookieapi/samples/c directory.

Error Handling
To handle errors appropriately, use the value returned by this function at a decision
point in your code. A successful return allows processing to continue. To handle a
failure, your code must call the RSAGetLastError function and take the appropriate
action.

0 RSACOOKIE_ERROR_
NO_ERROR

The operation was successful.

100 RSACOOKIE_ERROR_
CANNOT_ACCESS_SETTINGS

The API library cannot communicate
with the web server process to retrieve
necessary information.

101 RSACOOKIE_ERROR_
VALID_COOKIE_NOT_FOUND

The Cookie argument does not contain
a valid RSA cookie.

102 RSACOOKIE_ERROR_
DATA_TAG_NOT_FOUND

The cookie is valid but the required tag
is not present.

103 RSACOOKIE_ERROR_
NOT_ENOUGH_MEMORY

There is not enough memory to
perform the requested operation.

104 RSACOOKIE_ERROR_
INVALID_ARGUMENT

One of the input arguments is invalid.

105 RSACOOKIE_ERROR_
CIPHERSUITE_ERROR

The decryption routine failed to
decrypt the tag in the cookie.
 API Functions for the C/C++ Environment 25

Web Authentication Developer’s Guide
RSAGetUserName

Description
LPCSTR RSACOOKIEAPI_API RSAGetUserName(
 LPCSTR szInstance, LPCSTR Cookie,
 LPCSTR User, LPCSTR BrowserIP, LPCSTR Agent);

The RSAGetUserName function retrieves the username stored in the Web access
authentication cookie.

Architecture
This function returns the username as a NULL-terminated string. To contain the
string, the function allocates a buffer that must be freed by the caller when the buffer is
no longer useful. To free the buffer, your code must pass the buffer to the
RSAFreeMemory function.

If the RSAGetUserName function returns a NULL pointer, the caller can use the
RSAGetLastError function to retrieve one of the defined error codes. For more
information, see “Outputs and Post Conditions.”

Input Arguments

szInstance The value of the CGI variable SERVER_NAME unmodified.

Cookie The value of the CGI variable HTTP_COOKIE unmodified.

User The value of the CGI variable REMOTE_USER unmodified.

BrowserIP The value of the CGI variable REMOTE_ADDR unmodified.

Agent The value of the CGI variable HTTP_USER_AGENT unmodified.
26 API Functions for the C/C++ Environment

Web Authentication Developer’s Guide
Outputs and Post Conditions
This function returns the username as a NULL-terminated string and sets the last-error
code to one of the values in the following table. Use RSAGetLastError to return the
value. For more information, see “Error Handling.”

For information on field and parameter settings that result in particular error codes,
see “Troubleshooting C/C++ and Perl Programs” on page 37.

Calling or Command Sequence
For examples of how to use this function, refer to the sample code provided in the
rsacookieapi/samples/c directory.

Error Handling
To handle errors appropriately, use the error value returned by this function at a
decision point in your code. A successful return allows processing to continue. To
handle a failure, your code must call the RSAGetLastError function and take the
appropriate action.

0 RSACOOKIE_ERROR_
NO_ERROR

The operation was successful.

100 RSACOOKIE_ERROR_
CANNOT_ACCESS_SETTINGS

The API library cannot communicate with
the web server process to retrieve necessary
information.

101 RSACOOKIE_ERROR_
VALID_COOKIE_NOT_FOUND

The Cookie argument does not contain a
valid RSA cookie.

103 RSACOOKIE_ERROR_
NOT_ENOUGH_MEMORY

There is not enough memory to perform the
requested operation.

104 RSACOOKIE_ERROR_
INVALID_ARGUMENT

One of the input arguments is invalid.
 API Functions for the C/C++ Environment 27

Web Authentication Developer’s Guide
RSASetTagField

Description
LPCSTR RSACOOKIEAPI_API RSASetTagField(
 LPCSTR szInstance, LPCSTR Cookie,
 LPCSTR User, LPCSTR BrowserIP, LPCSTR Agent,
 LPCSTR Tag, LPCSTR Data, BOOL Encrypted);

The RSASetTagField function stores the NULL-terminated string passed as the
argument Data in the Web access authentication cookie. If the tag identified by the
Tag argument already exists it will be replaced.

Note: This function can accept the result of a previous call in the Cookie argument, if
more than one field is to be set.

Architecture
This function returns a new cookie string suitable for an HTTP Set-Cookie: header as
a NULL-terminated string. To contain the string, the function allocates a buffer that
must be freed by the caller when the buffer is no longer useful. To free the buffer, your
code must pass the buffer to the RSAFreeMemory function.

Note: U.S. export regulations impose a limit of six different encrypted custom fields
(a field consists of a tag and its data string). Duplicate tags with the same or different
data string do not add to the count of fields. A maximum of 30 bytes of data can be
encrypted in a field. The system returns an error if you exceed these limits.

If the RSASetTagField function returns a NULL pointer, the caller can use the
RSAGetLastError function to retrieve one of the defined error codes. For more
information, see “Outputs and Post Conditions.”
28 API Functions for the C/C++ Environment

Web Authentication Developer’s Guide
Input Arguments

Outputs and Post Conditions
This function returns the new cookie string as a NULL-terminated string and sets the
last-error code to one of the values in the following table. Use RSAGetLastError to
return the value. For more information, see “Error Handling.”

For information on field and parameter settings that result in particular error codes,
see “Troubleshooting C/C++ and Perl Programs” on page 37.

szInstance The value of the CGI variable SERVER_NAME unmodified.

Cookie The value of the CGI variable HTTP_COOKIE unmodified.

User The value of the CGI variable REMOTE_USER unmodified.

BrowserIP The value of the CGI variable REMOTE_ADDR unmodified.

Agent The value of the CGI variable HTTP_USER_AGENT unmodified.

Tag The name of the field to set or replace.

Data The data to set in the field. If binary data must be stored, use any
suitable ASCII encoding function to convert the data to a
NULL-terminated ANSI string.

If the Encrypted flag is set, the maximum is 30 bytes of data. If the
Encrypted flag is not set, the only size limitations are those imposed
by the browser and available memory.

Encrypted A Boolean flag indicating that the content of the field is to be encrypted.

0 RSACOOKIE_ERROR_
NO_ERROR

The operation was successful.

100 RSACOOKIE_ERROR_
CANNOT_ACCESS_SETTINGS

The API library cannot communicate
with the web server process to retrieve
necessary information.

101 RSACOOKIE_ERROR_VALID_
COOKIE_NOT_FOUND

The Cookie argument does not contain
a valid RSA cookie.

103 RSACOOKIE_ERROR_
NOT_ENOUGH_MEMORY

There is not enough memory to
perform the requested operation.

104 RSACOOKIE_ERROR_
INVALID_ARGUMENT

One of the input arguments is invalid.

105 RSACOOKIE_ERROR_
CIPHERSUITE_ERROR

The decryption routine failed to
decrypt the tag in the cookie.

106 RSACOOKIE_ERROR_
LONGDATALEN_ENCRYPTION

Attempted to encrypt more than 30
bytes of data in a field.

107 RSACOOKIE_ERROR_
TOOMANY_ENCRYPTED_FIELDS

Attempted to encrypt more than six
fields of custom data.
 API Functions for the C/C++ Environment 29

Web Authentication Developer’s Guide
Calling or Command Sequence
For examples of how to use this function, refer to the sample code provided in the
rsacookieapi/samples/c directory.

Error Handling
To handle errors appropriately, use the value returned by this function at a decision
point in your code. A successful return allows processing to continue. To handle a
failure, your code must call the RSAGetLastError function and take the appropriate
action.
30 API Functions for the C/C++ Environment

Web Authentication Developer’s Guide
RSADeleteTagField

Description
LPCSTR RSACOOKIEAPI_API RSADeleteTagField(
 LPCSTR szInstance, LPCSTR Cookie,
 LPCSTR User, LPCSTR BrowserIP, LPCSTR Agent,
 LPCSTR Tag);

The RSADeleteTagField function deletes a developer-defined field identified by
name. The name of the field is given by the Tag argument. The field is assumed to
have been stored in the Web access authentication cookie by a previous call to the
RSASetTagField function.

Note: This function can accept the result of a previous call in the Cookie argument, if
more than one field is to be deleted.

Architecture
This function returns a new cookie string suitable for an HTTP Set-Cookie: header as
a NULL-terminated string. To contain the string, the function allocates a buffer that
must be freed by the caller when the buffer is no longer useful. To free the buffer, your
code must pass the buffer to the RSAFreeMemory function.

If the RSADeleteTagField function returns a NULL pointer, use the
RSAGetLastError function to retrieve one of the defined error codes. For more
information, see “Outputs and Post Conditions.”

Input Arguments

szInstance The value of the CGI variable SERVER_NAME unmodified.

Cookie The value of the CGI variable HTTP_COOKIE unmodified.

User The value of the CGI variable REMOTE_USER unmodified.

BrowserIP The value of the CGI variable REMOTE_ADDR unmodified.

Agent The value of the CGI variable HTTP_USER_AGENT unmodified.

Tag The name of the field to delete.
 API Functions for the C/C++ Environment 31

Web Authentication Developer’s Guide
Outputs and Post Conditions
This function returns a NULL pointer and sets the last-error code to one of the values
in the following table. Use RSAGetLastError to return the value. For more
information, see “Error Handling.”

For information on field and parameter settings that result in particular error codes,
see “Troubleshooting C/C++ and Perl Programs” on page 37.

Calling or Command Sequence
For examples of how to use this function, refer to the sample code provided in the
rsacookieapi/samples/c directory.

Error Handling
To handle errors appropriately, use the value returned by this function at a decision
point in your code. A successful return allows processing to continue. To handle a
failure, your code must call the RSAGetLastError function and take the appropriate
action.

0 RSACOOKIE_ERROR_
NO_ERROR

The operation was successful.

100 RSACOOKIE_ERROR_
CANNOT_ACCESS_SETTINGS

The API library cannot communicate
with the web server process to retrieve
necessary information.

101 RSACOOKIE_ERROR_
VALID_COOKIE_NOT_FOUND

The Cookie argument does not contain
a valid RSA cookie.

102 RSACOOKIE_ERROR_
DATA_TAG_NOT_FOUND

The cookie is valid but the required tag
is not present.

103 RSACOOKIE_ERROR_
NOT_ENOUGH_MEMORY

There is not enough memory to
perform the requested operation.

104 RSACOOKIE_ERROR_
INVALID_ARGUMENT

One of the input arguments is invalid.
32 API Functions for the C/C++ Environment

Web Authentication Developer’s Guide
RSAFreeMemory

Description
VOID RSACOOKIEAPI_API RSAFreeMemory(LPCSTR Buffer);

The RSAFreeMemory function frees memory buffers returned by any of the other C
API functions.

Architecture
This function will free memory returned by the rsacookieapi library. If you use the
function with any other type of memory buffer, the program will not run to
completion.

Input Arguments

Calling or Command Sequence
For examples of how to use this function, refer to the sample code provided in the
rsacookieapi/samples/c directory.

Outputs and Post Conditions
The buffer referenced by the Buffer input argument is no longer valid.

Buffer The address of the buffer returned by the previous call.
 API Functions for the C/C++ Environment 33

Web Authentication Developer’s Guide
API Application for the Perl Script Environment

This section describes the application in the RSA Authentication Agent Web
Authentication API that is suitable for use in a Perl script development environment.

The Perl API consists of an applet named rsacookie that is installed in the web
server’s cgi directory. The applet can be called only in the context of a Perl script
running as a CGI application on the web server. Attempting to call this applet directly
will result in error code 2, indicating that the required CGI variables are missing.
34 API Application for the Perl Script Environment

Web Authentication Developer’s Guide
RSACookie

Description
rsacookie -g –shell
 get contents of shell field
rsacookie -g -tag tag_name
 get data field contents from tag named tag_name
rsacookie -g -e -tag tag_name
 get encrypted data field from tag tag_name
rsacookie -g –user
 get contents of user field
rsacookie -s -tag tag_name -data ASCII_data
 set data field contents into tag named tag_name
rsacookie -s -e -tag tag_name -data ASCII_data
 set encrypted data field into tag named tag_name
rsacookie -d -tag tag_name
 delete tag named tag_name

Architecture
This application returns the requested data as standard output. Any errors will result in
output being emitted as stderr and the error code being set to indicate the type of
failure. To set or delete multiple tags, use setenv to set the HTTP_COOKIE variable
to the return value of rsacookie for each call.

Note: U.S. export regulations limit encryption of custom data to six different fields (a
field consists of a tag and its data string). Duplicate tags with the same or different
data string do not add to the count of fields. A maximum of 30 bytes of data can be
encrypted in a field. The system returns an error if you exceed these limits.

Input Arguments
The data supplied as input for the -s switch must follow the -data switch and must be
a contiguous ASCII string. To include spaces and non-alphanumeric characters in the
string, enclose the string in double quotation marks (“ ”). To include a quotation mark
in the string, you must place a backslash directly before the quotation mark (\”).
 API Application for the Perl Script Environment 35

Web Authentication Developer’s Guide
Outputs and Post-Conditions
For information on field and parameter settings that result in particular error codes,
see “Troubleshooting C/C++ and Perl Programs” on page 37.

Calling or Command Sequence
For examples of how to use this API application, refer to the sample code provided in
the rsacookieapi/samples/perl directory.

Error Handling
To handle errors appropriately, use the value returned by this function at a decision
point in your code. A successful return allows processing to continue. To handle a
failure, your code must examine the value of the error property and take the
appropriate action.

0 Success. The output is the requested data.

1 The supplied arguments are invalid or incorrect.

2 The required CGI variables are missing.

3 The cookie operation failed. The first line of output in stderr contains the detailed
error.

4 Attempted to encrypt more than six custom data fields.

5 Attempted to encrypt more than 30 bytes of data in a custom data field.

6 The encryption routine failed to encrypt the tag in the cookie.
36 API Application for the Perl Script Environment

Web Authentication Developer’s Guide
Troubleshooting C/C++ and Perl Programs

This appendix provides information on the error codes returned by Web
Authentication API calls, depending on field and parameter settings.

Getting Third-Party Tag Data From the Cookie
C/C++ API Calls:

RSAGetTagField(const char* szInstance,
const char* Cookie,
const char* User,
const char* BrowserIP,
const char* Agent,
const char* Tag,
int Encrypted)

Perl API Calls:

rsacookie -g -tag tag_name

Action Result (C) Result (Perl)

Field Tag set to a nonexistent flag. Error Code 102:
RSACOOKIE_ERROR_DATA_TAG_NOT_FOUND

Error Code 3

Field Tag set to an empty string. Error Code 104:
RSACOOKIE_ERROR_INVALID_ARGUMENT

Error Code 3

Field Tag parameter set to the Tag of
an unencrypted field. Encrypted
parameter set to TRUE.

Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

Field Tag parameter set to the Tag of
an encrypted field. Encrypted
parameter set to FALSE.

Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

Field Tag set to a NULL pointer. Error Code 104:
RSACOOKIE_ERROR_INVALID_ARGUMENT

Error Code 1
 Troubleshooting C/C++ and Perl Programs 37

Web Authentication Developer’s Guide
Setting Third-Party Tag Data in the Cookie
C/C++ API Calls:

RSASetTagField(const char* szInstance,
const char* Cookie,

const char* User,
const char* BrowserIP,
const char* Agent,
const char* Tag,
const char* Data,

int Encrypted)

Perl API Call:

rsacookie -s -tag tag_name -data ASCII_data

Action Result (C) Result (Perl)

Field Tag set to a very long string. Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

Field Tag set to an empty string. Error Code 104:
RSACOOKIE_ERROR_INVALID_ARGUMENT

Error Code 3

Field Data set to a very long
string.

If process does not run out of memory, Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

If process runs out of memory, Error Code 103:
RSACOOKIE_ERROR_NOT_ENOUGH_MEMORY

Error Code 0

Error Code 3

31-byte (or longer) encrypted
Data field added. (Maximum
length is 30 bytes.)

Error Code 106:
RSACOOKIE_ERROR_LONGDATALEN_
ENCRYPTION

Error Code 5

Seven or more encrypted Data
fields added. (Maximum is six
encrypted fields.)

Error Code 107:
RSACOOKIE_ERROR_TOOMANY_ENCRYPTED_
FIELDS

Error Code 4

Field Data set to an empty string. Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

Field Data set to a NULL pointer. Error Code 104:
RSACOOKIE_ERROR_INVALID_ARGUMENT

Error Code 1
38 Troubleshooting C/C++ and Perl Programs

Web Authentication Developer’s Guide
Parameter Settings
C/C++ API Calls:

RSAGetShellField(const char* szInstance,
const char* Cookie,
const char* User,
const char* BrowserIP,
const char* Agent)

and
RSAGetTagField(const char* szInstance,

const char* Cookie,
const char* User,
const char* BrowserIP,
const char* Agent,
const char* Tag,
int Encrypted)

and
RSAGetUserName(const char* szInstance,

const char* Cookie,
const char* User,
const char* BrowserIP,
const char* Agent)

and
RSASetTagField(const char* szInstance,

const char* Cookie,
const char* User,
const char* BrowserIP,
const char* Agent,
const char* Tag,
const char* Data,
int Encrypted)

and
RSADeleteTagField(const char* szInstance,

const char* Cookie,
const char* User,
const char* BrowserIP,
const char* Agent,
const char* Tag)

Perl API Calls:

rsacookie -g –shell
rsacookie -g -tag tag_name
rsacookie -g –user
rsacookie -s -tag tag_name -data ASCII_data
rsacookie -d -tag tag_name
 Troubleshooting C/C++ and Perl Programs 39

Web Authentication Developer’s Guide
Agent Parameter Settings

BrowserIP Parameter Settings:

Action Result (C) Result (Perl)

Agent parameter set to a value
other than the value of the
HTTP_USER_AGENT
environment variable.

Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

Agent parameter set to a very
long string.

Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

Agent parameter set to an empty
string.

Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

Agent parameter set to a NULL
pointer.

Error Code 104:
RSACOOKIE_ERROR_INVALID_ARGUMENT

Error Code 1

Action Result (C) Result (Perl)

BrowserIP parameter set to a
value other than the value of the
REMOTE_ADDR environment
variable.

Error Code 101:
RSACOOKIE_ERROR_VALID_COOKIE_
NOT_FOUND

Error Code 3

BrowserIP parameter set to a
very long string.

Error Code 101:
RSACOOKIE_ERROR_VALID_COOKIE_
NOT_FOUND

Error Code 3

BrowserIP parameter set to an
empty string.

Error Code 101:
RSACOOKIE_ERROR_VALID_COOKIE_
NOT_FOUND

Error Code 3

BrowserIP parameter set to a
NULL pointer.

Error Code 104:
RSACOOKIE_ERROR_INVALID_ARGUMENT

Error Code 1
40 Troubleshooting C/C++ and Perl Programs

Web Authentication Developer’s Guide
Cookie Parameter Settings

szInstance Parameter Settings

Action Result (C) Result (Perl)

Cookie parameter set to a value
other than the value of the
HTTP_COOKIE environment
variable.

Error Code 101:
RSACOOKIE_ERROR_VALID_COOKIE_
NOT_FOUND

Error Code 3

Cookie parameter set to a very
long string.

Error Code 101:
RSACOOKIE_ERROR_VALID_COOKIE_
NOT_FOUND

Error Code 3

Cookie parameter set to an empty
string.

Error Code 101:
RSACOOKIE_ERROR_VALID_COOKIE_
NOT_FOUND

Error Code 3

Cookie parameter set to a NULL
pointer.

Error Code 104:
RSACOOKIE_ERROR_ INVALID_ARGUMENT

Error Code 1

Action Result (C) Result (Perl)

szInstance parameter set to a
value other than the value of the
SERVER_NAME environment
variable.

Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

szInstance parameter set to a
very long string.

Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

szInstance parameter set to an
empty string.

Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

szInstance parameter set to a
NULL pointer.

Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0
 Troubleshooting C/C++ and Perl Programs 41

Web Authentication Developer’s Guide
User Parameter Settings

Action Result (C) Result (Perl)

User parameter set to a very long
string.

Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

User parameter set to an empty
string.

Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

User parameter set to a value
other than the value of the
REMOTE_USER environment
variable.

Error Code 0:
RSACOOKIE_ERROR_NO_ERROR

Error Code 0

User parameter set to a NULL
pointer.

Error Code 104:
RSACOOKIE_ERROR_ INVALID_ARGUMENT

Error Code 1
42 Troubleshooting C/C++ and Perl Programs

	Contents
	Web Authentication API Overview
	Developer Profile
	Sample Source Code
	Before You Begin

	Installation and Set Up
	Setting Up the Environment for the Java Program
	Setting Up the Environment for the C/C++ Program
	Setting Up the Environment for the Perl Program

	API Information for the Java Environment
	Constructor
	RSACookieAPI

	Methods
	RSAGetLastError
	RSAGetShellField
	RSAGetTagField
	RSAGetUserName
	RSASetTagField
	RSADeleteTagField

	API Functions for the C/C++ Environment
	RSAGetLastError
	RSAGetShellField
	RSAGetTagField
	RSAGetUserName
	RSASetTagField
	RSADeleteTagField
	RSAFreeMemory

	API Application for the Perl Script Environment
	RSACookie

	Troubleshooting C/C++ and Perl Programs
	Getting Third-Party Tag Data From the Cookie
	Setting Third-Party Tag Data in the Cookie
	Parameter Settings
	Agent Parameter Settings
	BrowserIP Parameter Settings:
	Cookie Parameter Settings
	szInstance Parameter Settings
	User Parameter Settings

